Reading view

There are new articles available, click to refresh the page.

Why solving crosswords is like a phase transition

Most crossword puzzle fans have experienced that moment where, after a period of struggle on a particularly difficult puzzle, everything suddenly starts to come together, and they are able to fill in a bunch of squares correctly. Alexander Hartmann, a statistical physicist at the University of Oldenburg in Germany, had an intriguing insight when this happened while he was trying to solve a puzzle one day. According to his paper published in the journal Physical Review E, the crossword puzzle-solving process resembles a type of phase transition known as percolation—one that seems to be unique compared to standard percolation models.

Traditional mathematical models of percolation date back to the 1940s. Directed percolation is when the flow occurs in a specific direction, akin to how water moves through freshly ground coffee beans, flowing down in the direction of gravity. (In physical systems, percolation is one of the primary mechanisms behind the Brazil nut effect, along with convection.) Such models can also be applicable to a wide range of large networked systems: power grids, financial markets, and social networks, for example.

Individual nodes in a random network start linking together, one by one, via short-range connections, until the number of connections reaches a critical threshold (tipping point). At that point, there is a phase shift in which the largest cluster of nodes grows rapidly, giving rise to more long-range connections, resulting in uber-connectivity. The likelihood of two clusters merging is proportional to their size, and once a large cluster forms, it dominates the networked system, absorbing smaller clusters.

Read full article

Comments

© Rhododendrites/CC BY-SA 4.0

One less thing to worry about in 2025: Yellowstone probably won’t go boom

It's difficult to comprehend what 1,000 cubic kilometers of rock would look like. It's even more difficult to imagine it being violently flung into the air. Yet the Yellowstone volcanic system blasted more than twice that amount of rock into the sky about 2 million years ago, and it has generated a number of massive (if somewhat smaller) eruptions since, and there have been even larger eruptions deeper in the past.

All of which might be enough to keep someone nervously watching the seismometers scattered throughout the area. But a new study suggests that there's nothing to worry about in the near future: There's not enough molten material pooled in one place to trigger the sort of violent eruptions that have caused massive disruptions in the past. The study also suggests that the primary focus of activity may be shifting outside of the caldera formed by past eruptions.

Understanding Yellowstone

Yellowstone is fueled by what's known as a hotspot, where molten material from the Earth's mantle percolates up through the crust. The rock that comes up through the crust is typically basaltic (a definition based on the ratio of elements in its composition) and can erupt directly. This tends to produce relatively gentle eruptions where lava flows across a broad area, generally like you see in Hawaii and Iceland. But this hot material can also melt rock within the crust, producing a material called rhyolite. This is a much more viscous material that does not flow very readily and, instead, can cause explosive eruptions.

Read full article

Comments

© Deb Snelson

Delve into the physics of the Hula-Hoop

High-speed video of experiments on a robotic hula hooper, whose hourglass form holds the hoop up and in place.

Some version of the Hula-Hoop has been around for millennia, but the popular plastic version was introduced by Wham-O in the 1950s and quickly became a fad. Now, researchers have taken a closer look at the underlying physics of the toy, revealing that certain body types are better at keeping the spinning hoops elevated than others, according to a new paper published in the Proceedings of the National Academy of Sciences.

“We were surprised that an activity as popular, fun, and healthy as hula hooping wasn’t understood even at a basic physics level,” said co-author Leif Ristroph of New York University. “As we made progress on the research, we realized that the math and physics involved are very subtle, and the knowledge gained could be useful in inspiring engineering innovations, harvesting energy from vibrations, and improving in robotic positioners and movers used in industrial processing and manufacturing.”

Ristroph's lab frequently addresses these kinds of colorful real-world puzzles. For instance, in 2018, Ristroph and colleagues fine-tuned the recipe for the perfect bubble based on experiments with soapy thin films. In 2021, the Ristroph lab looked into the formation processes underlying so-called "stone forests" common in certain regions of China and Madagascar.

Read full article

Comments

© Warner Bros.

Fast radio bursts originate near the surface of stars

When fast radio bursts (FRBs) were first detected in 2007, they were a complete enigma. As their name implies, these events involve a very brief eruption of radio emissions and then typically silence, though a few objects appear to be capable of sending out multiple bursts. By obtaining enough data from lots of individual bursts, researchers gradually put the focus on magnetars, versions of neutron stars that have intense magnetic fields.

But we still don't know whether a magnetar is a requirement for an FRB or if the events can be triggered by less magnetized neutron stars as well. And we have little hint of the mechanism that produces the burst itself. Bursts could potentially be produced by an event in the star's magnetic field itself, or the star could be launching some energetic material that subsequently produces an FRB at some distance from the star.

But now, a rare burst has provided indications that FRBs likely originate near the star and that they share a feature with the emissions of pulsars, another subtype of neutron star.

Read full article

Comments

© NASA/JPL-Caltech

Ten cool science stories we almost missed

There is rarely time to write about every cool science paper that comes our way; many worthy candidates sadly fall through the cracks over the course of the year. But as 2024 comes to a close, we've gathered ten of our favorite such papers at the intersection of science and culture as a special treat, covering a broad range of topics: from reenacting Bronze Age spear combat and applying network theory to the music of Johann Sebastian Bach, to Spider-Man inspired web-slinging tech and a mathematical connection between a turbulent phase transition and your morning cup of coffee. Enjoy!

Reenacting Bronze Age spear combat

Experiment with experienced fighters who spar freely using different styles. An experiment with experienced fighters who spar freely using different styles. Credit: Valerio Gentile/CC BY

The European Bronze Age saw the rise of institutionalized warfare, evidenced by the many spearheads and similar weaponry archaeologists have unearthed. But how might these artifacts be used in actual combat? Dutch researchers decided to find out by constructing replicas of Bronze Age shields and spears and using them in realistic combat scenarios. They described their findings in an October paper published in the Journal of Archaeological Science.

There have been a couple of prior experimental studies on bronze spears, but per Valerio Gentile (now at the University of Gottingen) and coauthors, practical research to date has been quite narrow in scope, focusing on throwing weapons against static shields. Coauthors C.J. van Dijk of the National Military Museum in the Netherlands and independent researcher O. Ter Mors each had more than a decade of experience teaching traditional martial arts, specializing in medieval polearms and one-handed weapons. So they were ideal candidates for testing the replica spears and shields.

Read full article

Comments

© APS/Carin Cain

The physics of ugly Christmas sweaters

'Tis the season for many holiday traditions, including the Ugly Christmas Sweater—you know, those 1950s-style heavy knits featuring some kind of cartoonish seasonal decoration, like snowflakes, Santa Claus, or—in the case of Mark Darcy from Bridget Jones' Diary (2001)—Rudolph the Red-Nosed Reindeer. "It’s obnoxious and tacky, but also fuzzy and kind of wholesome—the fashion equivalent of a Hallmark Christmas movie (with a healthy dose of tongue-in-cheek)," as CNN's Marianna Cerini recently observed.

Fashion (or lack thereof) aside, sweaters and other knitted fabric are also fascinating to physicists and mathematicians. Case in point: a recent paper published in the journal Physical Review Letters examining the complex mechanics behind the many resting shapes a good Jersey knit can form while at rest.

Knitted fabrics are part of a class of intertwined materials—which also includes birds' nests, surgical knots, knotted shoelaces, and even the degradation of paper fibers in ancient manuscripts. Knitted fabrics are technically a type of metamaterial: an engineered material that gets its properties not from the base materials but from their designed structures. The elasticity (aka, stretchiness) of knitted fabrics is an emergent property: the whole is more than the sum of its parts. How those components (strands of yarn) are arranged at an intermediate scale (the structure) determines the macro scale properties of the resulting fabric.

Read full article

Comments

© Miramax Films

Could microwaved grapes be used for quantum sensing?

There are thousands of YouTube videos in which DIY science enthusiasts cut grapes in half—leaving just a thin bit of skin connecting them—and put the grapes in the microwave, just to marvel at the sparks and plume of ionized gas (plasma) that the grapes produce. This quirky property of grapes might help make more efficient quantum sensors, according to a new paper published in the journal Physical Review Applied.

The plasma-inducing grape effect was first observed in 1994, per the authors. As previously reported, the usual explanation for the generation of plasmas is that grapes are so small that the irradiating microwaves become highly concentrated in the grape tissue, ripping some the molecules apart to generate charged ions (adding to the electrolytes already present in the grapes). The electromagnetic field that forms causes ions to flow from one grape half to the other via the connecting skin—at least at first. That's when you get the initial sparks. Eventually, the ions start passing through the surrounding air as well, ionizing it to produce that hot plume of plasma.

But in 2019, Trent University scientists showed that explanation isn't quite right. The skin bridge isn't necessary for the effect to occur. Rather, the plasma is generated by an electromagnetic "hot spot." The grapes have the right refractive index and size to "trap" microwaves, so putting two of them close together leads to the generation of a hot spot between them. The trick also works with gooseberries, large blackberries, and quail eggs, as well as hydrogel beads—plastic beads soaked in water. ("Many microwaves were in fact harmed during the experiments," co-author Hamza Khattak admitted at the time.)

Read full article

Comments

© Fawaz, Nair, Volz

New physics sim trains robots 430,000 times faster than reality

On Thursday, a large group of university and private industry researchers unveiled Genesis, a new open source computer simulation system that lets robots practice tasks in simulated reality 430,000 times faster than in the real world. Researchers can also use an AI agent to generate 3D physics simulations from text prompts.

The accelerated simulation means a neural network for piloting robots can spend the virtual equivalent of decades learning to pick up objects, walk, or manipulate tools during just hours of real computer time.

"One hour of compute time gives a robot 10 years of training experience. That's how Neo was able to learn martial arts in a blink of an eye in the Matrix Dojo," wrote Genesis paper co-author Jim Fan on X, who says he played a "minor part" in the research. Fan has previously worked on several robotics simulation projects for Nvidia.

Read full article

Comments

© Zhou et al.

Google gets an error-corrected quantum bit to be stable for an hour

On Monday, Nature released a paper from Google's quantum computing team that provides a key demonstration of the potential of quantum error correction. Thanks to an improved processor, Google's team found that increasing the number of hardware qubits dedicated to an error-corrected logical qubit led to an exponential increase in performance. By the time the entire 105-qubit processor was dedicated to hosting a single error-corrected qubit, the system was stable for an average of an hour.

In fact, Google told Ars that errors on this single logical qubit were rare enough that it was difficult to study them. The work provides a significant validation that quantum error correction is likely to be capable of supporting the execution of complex algorithms that might require hours to execute.

A new fab

Google is making a number of announcements in association with the paper's release (an earlier version of the paper has been up on the arXiv since August). One of those is that the company is committed enough to its quantum computing efforts that it has built its own fabrication facility for its superconducting processors.

Read full article

Comments

© Google

Latest James Webb data hints at new physics in Universe’s expansion

Physicists have been puzzling over conflicting observational results pertaining to the accelerating expansion rate of our Universe—a major discovery recognized by the 2011 Nobel Prize in Physics. New observational data from the James Webb Space Telescope (JWST) has confirmed that prior measurements of distances between nearby stars and galaxies made by the Hubble Space Telescope are not in error, according to a new paper published in The Astrophysical Journal. That means the discrepancy between observation and our current theoretical model of the Universe is more likely to be due to new physics.

As previously reported, the Hubble Constant is a measure of the Universe's expansion expressed in units of kilometers per second per megaparsec (Mpc). So, each second, every megaparsec of the Universe expands by a certain number of kilometers. Another way to think of this is in terms of a relatively stationary object a megaparsec away: Each second, it gets a number of kilometers more distant.

How many kilometers? That's the problem here. There are basically three methods scientists use to measure the Hubble Constant: looking at nearby objects to see how fast they are moving, gravitational waves produced by colliding black holes or neutron stars, and measuring tiny deviations in the afterglow of the Big Bang known as the Cosmic Microwave Background (CMB). However, the various methods have come up with different values. For instance, tracking distant supernovae produced a value of 73 km/s Mpc, while measurements of the CMB using the Planck satellite produced a value of 67 km/s Mpc.

Read full article

Comments

© NASA/ESA/CSA/STScI/A. Riess (JHU)

Cheerios effect inspires novel robot design

There's a common popular science demonstration involving "soap boats," in which liquid soap poured onto the surface of water creates a propulsive flow driven by gradients in surface tension. But it doesn't last very long since the soapy surfactants rapidly saturate the water surface, eliminating that surface tension. Using ethanol to create similar "cocktail boats" can significantly extend the effect because the alcohol evaporates rather than saturating the water.

That simple classroom demonstration could also be used to propel tiny robotic devices across liquid surfaces to carry out various environmental or industrial tasks, according to a preprint posted to the physics arXiv. The authors also exploited the so-called "Cheerios effect" as a means of self-assembly to create clusters of tiny ethanol-powered robots.

As previously reported, those who love their Cheerios for breakfast are well acquainted with how those last few tasty little "O"s tend to clump together in the bowl: either drifting to the center or to the outer edges. The "Cheerios effect is found throughout nature, such as in grains of pollen (or, alternatively, mosquito eggs or beetles) floating on top of a pond; small coins floating in a bowl of water; or fire ants clumping together to form life-saving rafts during floods. A 2005 paper in the American Journal of Physics outlined the underlying physics, identifying the culprit as a combination of buoyancy, surface tension, and the so-called "meniscus effect."

Read full article

Comments

© Jackson K. Wilt et al. 2024

Supermassive black hole binary emits unexpected flares

What happens when a gargantuan cloud of gas swallows a pair of monster black holes with their own appetites? Feasting on the gas can cause some weird (heavenly) bodily functions.

AT 2021hdr is a binary supermassive black hole (BSMBH) system in the center of a galaxy 1 billion light-years away, in the Cygnus constellation. In 2021, researchers observing it using NASA’s Zwicky Transient Facility saw strange outbursts that were flagged by the ALerCE (Automatic Learning for the Rapid Classification of Events) team.

This active galactic nucleus (AGN) flared so brightly that AT 2021hdr was almost mistaken for a supernova. Repeating flares soon ruled that out. When the researchers questioned whether they might be looking at a tidal disruption event—a star being torn to shreds by the black holes—something was still not making sense. They then compared observations they made in 2022 using NASA’s Neil Gehrels Swift Observatory to simulations of something else they suspected: a tidal disruption of a gas cloud by binary supermassive black holes. It seemed they had found the most likely answer.

Read full article

Comments

© Northwestern University

❌