❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Generating power with a thin, flexible thermoelectric film

12 December 2024 at 11:00

The No. 1 nuisance with smartphones and smartwatches is that we need to charge them every day. As warm-blooded creatures, however, we generate heat all the time, and that heat can be converted into electricity for some of the electronic gadgetry we carry.

Flexible thermoelectric devices, or F-TEDs, can convert thermal energy into electric power. The problem is that F-TEDs weren’t actually flexible enough to comfortably wear or efficient enough to power even a smartwatch. They were also very expensive to make.

But now, a team of Australian researchers thinks they finally achieved a breakthrough that might take F-TEDs off the ground.

Read full article

Comments

Albert Invent hopes to revolutionize the chemicals sector with its AI platform

11 December 2024 at 03:07

If startup funding rounds are any metric, generative AI is seeing ample adoption in the sciences. It makes sense: there’s a lot of trial and error involved in research and development, and any tool that can speed up the process for researchers is bound to be useful. The latest is Albert Invent, which offers an […]

Β© 2024 TechCrunch. All rights reserved. For personal use only.

E-tattoos could make mobile EEGs a reality

A 3D-printable EEG electrode e-tattoo. Credit: University of Texas at Austin.

Epidermal electronics attached to the skin via temporary tattoos (e-tattoos) have been around for more than a decade, but they have their limitations, most notably that they don't function well on curved and/or hairy surfaces. Scientists have now developed special conductive inks that can be printed right onto a person's scalp to measure brain waves, even if they have hair. According to a new paper published in the journal Cell Biomaterials, this could one day enable mobile EEG monitoring outside a clinical setting, among other potential applications.

EEGs are a well-established, non-invasive method for recording the electrical activity of the brain, a crucial diagnostic tool for monitoring such conditions as epilepsy, sleep disorders, and brain injuries. It's also an important tool in many aspects of neuroscience research, including the ongoing development of brain-computer interfaces (BCIs). But there are issues. Subjects must wear uncomfortable caps that aren't designed to handle the variation in people's' head shapes, so a clinician must painstakingly map out the electrode positions on a given patient's headβ€”a time-consuming process. And the gel used to apply the electrodes dries out and loses conductivity within a couple of hours, limiting how long one can make recordings.

By contrast, e-tattoos connect to skin without adhesives, are practically unnoticeable, and are typically attached via temporary tattoo, allowing electrical measurements (and other measurements, such as temperature and strain) using ultra-thin polymers with embedded circuit elements. They can measure heartbeats on the chest (ECG), muscle contractions in the leg (EMG), stress levels, and alpha waves through the forehead (EEG), for example.

Read full article

Comments

Β© University of Texas at Austin

❌
❌