❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

3D map of exoplanet atmosphere shows wacky climate

Astronomers have detected over 5,800 confirmed exoplanets. One extreme class is ultra-hot Jupiters, of particular interest because they can provide a unique window into planetary atmospheric dynamics. According to a new paper published in the journal Nature, astronomers have mapped the 3D structure of the layered atmosphere of one such ultra-hot Jupiter-size exoplanet, revealing powerful winds that create intricate weather patterns across that atmosphere. A companion paper published in the journal Astronomy and Astrophysics reported on the unexpected identification of titanium in the exoplanet's atmosphere as well.

As previously reported, thanks to the massive trove of exoplanets discovered by the Kepler mission, we now have a good idea of what kinds of planets are out there, where they orbit, and how common the different types are. What we lack is a good sense of what that implies in terms of the conditions on the planets themselves. Kepler can tell us how big a planet is, but it doesn't know what the planet is made of. And planets in the "habitable zone" around stars could be consistent with anything from a blazing hell to a frozen rock.

Like the Transiting Exoplanet Survey Satellite (TESS), Kepler identifies planets using the transit method. This works for systems in which the planets orbit in a plane that takes them between their host star and Earth. As this occurs, the planet blocks a small fraction of the starlight that we see from Earth (or nearby orbits). If these dips in light occur with regularity, they're diagnostic of something orbiting the star.

Read full article

Comments

Β© ESO/M. Kornmesser

AI helps ID paint chemistry of Berlin Wall murals

The fall of the Berlin Wall in November 1989 was a seminal moment in 20th century history, paving the way for German reunification. Many segments, both large and small, were preserved for posterityβ€”including portions covered in graffiti or murals. A team of Italian scientists used a combination of spectroscopic analysis and machine learning to study paint chips from wall fragments to learn more about the chemistry of the paints and pigments used, according to a new paper published in the Journal of the American Chemical Society.

There has been increased attention in recent years to preserving street art, which is vulnerable both to degradation over time as well as deliberate vandalism. For instance, in 2021, Italian chemists figured out how to use hydrogels to remove added graffiti from vandalized murals in Florence. (Over-painting by vandals is so chemically similar to the original painting underneath that it is difficult to selectively remove just the over-painting without damaging the original.) Unlike most classic masterpieces of the past, created with paints designed to last centuries, street art is more ephemeral in nature, using materials that lack such longevity.

In many cases, like the Berlin Wall, the painters didn't bother to document the specific materials they used, their application techniques, or other useful information that conservators could use to restore or conserve street art. Modern painting materials are also much more complex, and manufacturers typically do not report specific information on the composition of those materials.

Read full article

Comments

Β© Thierry Noir/CC BY-SA 3.0

❌
❌