Normal view

There are new articles available, click to refresh the page.
Today — 23 February 2025Main stream

Flashy exotic birds can actually glow in the dark

Found in the forests of Papua New Guinea, Indonesia, and Eastern Australia, birds of paradise are famous for flashy feathers and unusually shaped ornaments, which set the standard for haute couture among birds. Many use these feathers for flamboyant mating displays in which they shape-shift into otherworldly forms.

As if this didn’t attract enough attention, we’ve now learned that they also glow in the dark.

Biofluorescent organisms are everywhere, from mushrooms to fish to reptiles and amphibians, but few birds have been identified as having glowing feathers. This is why biologist Rene Martin of the University of Nebraska-Lincoln wanted to investigate. She and her team studied a treasure trove of specimens at the American Museum of Natural History, which have been collected since the 1800s, and found that 37 of the 45 known species of birds of paradise have feathers that fluoresce.

Read full article

Comments

© TeeJe

Yesterday — 22 February 2025Main stream

The seemingly indestructible fists of the mantis shrimp can take a punch

The mantis shrimp comes equipped with its own weapons. It has claws that look like permanently clenched fists that are known as dactyl clubs. But when it smashes the shells of its prey, these fists come out of it undamaged.

When throwing punches, mantis shrimp can strike at the speed of a .22 caliber bullet (about 1,316 kmph or 818 mph)—one of the fastest movements in the animal kingdom. That generates a force over a thousand times their body weight. However, unleashing that much energy can backfire because the shockwaves it produces could seriously damage an animal’s soft tissue. None of that seems to affect the mantis shrimp. Now we finally know why.

When a team of researchers from Northwestern University studied the dactyl clubs of one mantis shrimp species, they found that they have layered structures that selectively block sound waves, acting as protective gear against vibrations that could otherwise harm the shrimp. These types of structures, known as phononic mechanisms, filter out sound waves that could otherwise cause nerve and soft tissue trauma.

Read full article

Comments

© Giordano Cipriani

Before yesterdayMain stream

Parrots struggle when told to do something other than mimic their peers

There have been many studies on the capability of non-human animals to mimic transitive actions—actions that have a purpose. Hardly any studies have shown that animals are also capable of intransitive actions. Even though intransitive actions have no particular purpose, imitating these non-conscious movements is still thought to help with socialization and strengthen bonds for both animals and humans.

Zoologist Esha Haldar and colleagues from the Comparative Cognition Research group worked with blue-throated macaws, which are critically endangered, at the Loro Parque Fundación in Tenerife. They trained the macaws to perform two intransitive actions, then set up a conflict: Two neighboring macaws were asked to do different actions.

What Haldar and her team found was that individual birds were more likely to perform the same intransitive action as a bird next to them, no matter what they’d been asked to do. This could mean that macaws possess mirror neurons, the same neurons that, in humans, fire when we are watching intransitive movements and cause us to imitate them (at least if these neurons function the way some think they do).

Read full article

Comments

© Jim Cumming

Life is thriving in the subsurface depths of Earth

From the flamboyant blossoms and birds of rainforests to the living rainbows of coral reefs, Earth’s surface is teeming with life. But some of its most diverse and fascinating biomes are thriving in the darkness below.

We used to think that the subsurface was a far-from-ideal place for living things. Habitats that can soak up light and warmth from the Sun have the energy to sustain many forms of life and so were viewed as the most diverse. That view is now changing.

Led by Emil Ruff of the Marine Biological Laboratory (MBL), Woods Hole, Mass., new research has unearthed communities of underground microbes that are almost as—and sometimes more—diverse than even reefs and rainforests. Ruff and his team found that subsurface bacteria and archaea are flourishing, even at depths where the energy supply is orders of magnitude lower than enjoyed by organisms in habitats that see the sun.

Read full article

Comments

© HAYKIRDI

Manta rays inspire faster swimming robots and better water filters

Manta rays are elegantly shaped. They swim by flapping their fins like enormous wings, and their gills filter for plankton with the utmost precision. These creatures have now inspired human innovations that take soft robots and water filters to the next level.

With fins that borrow their shape and motion from mantas, a soft robot created by a team of researchers at North Carolina State University and the University of Virginia improves on a previous model by reaching speeds of 6.8 body lengths per second, nearly double what its predecessor was capable of. This makes it the fastest soft robot so far. It is also more energy-efficient than its previous iteration and can swim not just on the surface, but upward and downward, just like an actual manta ray.

Another research team at MIT used the gills of these creatures, which filter for plankton, to improve commercial water filtration systems. Their gill openings are also the perfect size to help them breathe while they feed, absorbing oxygen from water on its way out. The rays’ balance of feeding and breathing helped the researchers figure out a filter structure that more precisely controls inflow and outflow.

Read full article

Comments

© MLADEN ANTONOV/AFP via Getty Images

Frogfish reveals how it evolved the “fishing rod” on its head

Behold the frogfish. This bizarre creature really is a fish, despite its bullfrog face, pectoral fins that look like webbed feet, and a froglike mouth that snaps up unsuspecting prey.

But the way it lures its prey is even weirder. Frogfish belong to the anglerfish family known as Antennariidae. Like their anglerfish cousins who lurk in the ocean’s depths, these ambush predators attract their next meal via an appendage on their heads that they use like a fishing lure. This appendage is known as the illicium and thought to have once been a dorsal fin. It has a specialized skin flap, the esca at the end. It tantalizes small fish and crustaceans into thinking it’s a worm until they come too close.

How frogfish controlled the illicium was previously unknown. Led by biologist Naoyuki Yamamoto of Nagoya University, a team of researchers have now discovered that a specialized population of motor neurons have evolved to allow it to shake the illicium around like a wriggling worm. Yamamoto thinks they were originally dorsal fin motor neurons that became more specialized.

Read full article

Comments

© Divelvanov via Getty

When does your brain think something is worth the wait?

Whether it’s braving the long line at a trendy new restaurant or hanging on just a few minutes longer to see if there’s a post-credits scene after a movie, the decision to persevere or ditch it depends on specific regions of our brains.

Waiting is not always about self-control. Deciding to wait (or not to wait) also involves gauging the value of the potential reward. In an experiment that investigated wait times among people with lesions in the frontal cortex of the brain, University of Pennsylvania psychologist Joe Kable and his research team found that subjects with damage to certain regions of the prefrontal cortex were less likely to wait things out.

“[Our] findings suggest that regions of the frontal cortex make computationally distinct contributions to adaptive persistence,” he and his team said in a study recently published in the Journal of Neuroscience.

Read full article

Comments

© Yellow Dog Productions via Getty

Craving carbs? Blame an ancient gene.

There is now a genetic excuse not to bother cutting carbs. Humans have genetically adapted to eating starchy foods, and our ancestors may have been carb-ivores even before modern Homo sapiens emerged.

The salivary amylase gene, known as AMY1, is already known to have helped us adapt to eating carbs. It encodes amylase, an enzyme that breaks starches found in pasta and bread down to glucose—and may have given us a taste preference for them. Humans have multiple copies of the gene, which may help us produce high levels of the enzyme.

Researchers from the University of Buffalo and the Jackson Laboratory have now found that, while most copies of this gene arose with the advent of farming, modern humans and our closest relatives had accumulated extra copies long before agriculture.

Read full article

Comments

© Yana Iskayeva/Getty

Lizards and snakes are 35 million years older than we thought

Lizards are ancient creatures. They were around before the dinosaurs and persisted long after dinosaurs went extinct. We’ve now found they are 35 million years older than we thought they were.

Cryptovaranoides microlanius was a tiny lizard that skittered around what is now southern England during the late Triassic, around 205 million years ago. It likely snapped up insects in its razor teeth (its name means “hidden lizard, small butcher”). But it wasn’t always considered a lizard. Previously, a group of researchers who studied the first fossil of the creature, or holotype, concluded that it was an archosaur, part of a group that includes the extinct dinosaurs and pterosaurs along with extant crocodilians and birds.

Now, another research team from the University of Bristol has analyzed that fossil and determined that Cryptovaranoides is not an archosaur but a lepidosaur, part of a larger order of reptiles that includes squamates, the reptile group that encompasses modern snakes and lizards. It is now also the oldest known squamate.

Read full article

Comments

© Lavinia Gandolfi/David Whiteside, Sophie Chambi-Trowell, Mike Benton and the Natural History Museum, London

Researchers finally identify the ocean’s “mystery mollusk”

Some of the most bizarre lifeforms on Earth lurk in the deeper realms of the ocean. There was so little known about one of these creatures that it took 20 years just to figure out what exactly it was. Things only got weirder from there.

The organism’s distinctive, glowing presence was observed by multiple deep-sea missions between 2000 to 2021 but was simply referred to as “mystery mollusk.” A team of Monterey Bay Aquarium Research Institute (MBARI) researchers has now reviewed extensive footage of past mystery mollusk sightings and used MBARI’s remotely operated vehicles (ROVs) to observe it and collect samples. They’ve given it a name and have finally confirmed that it is a nudibranch—the first and only nudibranch known to live at such depths.

Bathydevius caudactylus, as this nudibranch is now called, lives 1,000–4,000 meters (3,300–13,100 feet) deep in the ocean’s bathypelagic or midnight zone. It moves like a jellyfish, eats like a Venus flytrap, and is bioluminescent, and its genes are distinct enough for it to be classified as the first member of a new phylogenetic family.

Read full article

Comments

© MBARI

Supermassive black hole binary emits unexpected flares

What happens when a gargantuan cloud of gas swallows a pair of monster black holes with their own appetites? Feasting on the gas can cause some weird (heavenly) bodily functions.

AT 2021hdr is a binary supermassive black hole (BSMBH) system in the center of a galaxy 1 billion light-years away, in the Cygnus constellation. In 2021, researchers observing it using NASA’s Zwicky Transient Facility saw strange outbursts that were flagged by the ALerCE (Automatic Learning for the Rapid Classification of Events) team.

This active galactic nucleus (AGN) flared so brightly that AT 2021hdr was almost mistaken for a supernova. Repeating flares soon ruled that out. When the researchers questioned whether they might be looking at a tidal disruption event—a star being torn to shreds by the black holes—something was still not making sense. They then compared observations they made in 2022 using NASA’s Neil Gehrels Swift Observatory to simulations of something else they suspected: a tidal disruption of a gas cloud by binary supermassive black holes. It seemed they had found the most likely answer.

Read full article

Comments

© Northwestern University

❌
❌